RocketMQ提供了2种消息过滤的方式:

  • TAG 过滤

  • SQL92 过滤

SQL过滤默认是没有打开的,如果想要支持,必须在broker的配置文件中设置:enablePropertyFilter = true

一. 示例代码

1.1 producer 代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
public class Producer {

public static void main(String[] args) throws Exception {

// 实例化消息生产者Producer
DefaultMQProducer producer = new DefaultMQProducer("tag_p_g");
// 设置NameServer的地址
producer.setNamesrvAddr("127.0.0.1:9876");

producer.start();

String[] tags = {"TAG_A", "TAG_B", "TAG_C"};

for (int i = 0; i < 10 ; i++) {

byte[] body = ("Hi filter message," + i).getBytes();
String tag = tags[i % tags.length];

//同一个topic下,会发送多种tag消息
Message msg = new Message("MY_topic", tag, body);

//设置一些属性,消费者SQL过滤时可以使用
msg.putUserProperty("age", String.valueOf(i));
msg.putUserProperty("name", "name" + (i + 1));
msg.putUserProperty("isGender", String.valueOf(new Random().nextBoolean()));

SendResult sendResult = producer.send(msg);

System.out.println("sendResult = " + sendResult);
}


producer.shutdown();
}
}

1.2 consumer 代码

1.2.1 TAG过滤

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
public class Consumer {

public static void main(String[] args) throws Exception {

DefaultMQPushConsumer consumer = new DefaultMQPushConsumer("c_tag_group");

consumer.setNamesrvAddr("127.0.0.1:9876");

/**
* 订阅消息过滤
* 只订阅 topic = MY_topic 下
* tag = TAG_A 或者 tag = TAG_C 的消息,不要 tag = TAG_B 的消息
* 订阅多个tag使用 || 分开
*/
consumer.subscribe("MY_topic", "TAG_A || TAG_C");

consumer.registerMessageListener(new MessageListenerConcurrently() {
@Override
public ConsumeConcurrentlyStatus consumeMessage(List<MessageExt> msgs, ConsumeConcurrentlyContext context) {

for (MessageExt msg : msgs) {
System.out.println(msg);
}

//消费成功时返回
return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
}
});

consumer.start();

System.out.println("Filter Tag Consumer Started");
}
}

1.2.2 SQL92过滤

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
public class Consumer {

public static void main(String[] args) throws Exception {

DefaultMQPushConsumer consumer = new DefaultMQPushConsumer("cg");

consumer.setNamesrvAddr(MQConstant.NAME_SERVER_ADDR);

/**
* 订阅消息过滤: 根据消息生产者指定的用户属性进行过滤
* 支持的常量类型:
* 数值:比如:123,3.1415
* 字符:必须用单引号包裹起来,比如:'abc'
* 布尔:TRUE 或 FALSE
* NULL:特殊的常量,表示空
*
* 支持的运算符有:
* 数值比较:>,>=,<,<=,BETWEEN,=
* 字符比较:=,<>,IN
* 逻辑运算 :AND,OR,NOT
* NULL判断:IS NULL 或者 IS NOT NULL
*
* // (age between 6 and 9) AND (name IS NOT NULL) AND (isGender = TRUE)
*/
consumer.subscribe(MQConstant.FILTER_SQL_TOPIC, MessageSelector.bySql("(age between 6 and 9) AND (name IS NOT NULL) AND (isGender = TRUE)"));

consumer.registerMessageListener(new MessageListenerConcurrently() {
@Override
public ConsumeConcurrentlyStatus consumeMessage(List<MessageExt> msgs, ConsumeConcurrentlyContext context) {

for (MessageExt msg : msgs) {
System.out.println(msg);
}

//消费成功时返回
return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
}
});

consumer.start();

System.out.println("Filter SQL Consumer Started");
}
}

二. 说明

消费者去broker拉取消息时,先经过broker过滤一次,在经过消费者过滤一次

  1. 如果是 TAG 过滤。broker要先根据ConsumeQueue 中 Tag HashCode过滤一次,消费者在根据 Tag 值过滤一次。因为 ConsumeQueue 为了便于检索,文件中每一个条目都是定长20字节,所以条目在最后八个字节存储的是消息 Tag 的 HashCode,而不是hash值。这样broker在拉取磁盘中的消息时,只需要对比 ConsumeQueue中 的Tag HashCode,而不需要解析 CommitLog 中的 Tag 值,如果发生Hash冲突,则交给消费者客户端过滤消息中的Tag值。
  2. 如果是 SQL92 过滤。则全部由 broker 过滤。因为 SQL 过滤的是消息中的属性值,所以必须反序列化 CommitLog 中的属性值,既然在broker已经进行了精确匹配,那么客户端自然可以省去这个步骤了。

三. 消费者启动注册订阅信息到broker

consumer订阅信息会保存到SubscriptionData中,当consumer启动后,会通过心跳先将订阅信息发送到broker。broker主要是构建2部分:

  1. 保存consumer发送的订阅信息SubscriptionData对象。
  2. 构建SQL过滤的ConsumerFilterData对象。

那么我们看下consumer构建订阅数据以及发送到broker的过程:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
// org.apache.rocketmq.client.impl.consumer.DefaultMQPushConsumerImpl#subscribe(java.lang.String, org.apache.rocketmq.client.consumer.MessageSelector)
public void subscribe(final String topic, final MessageSelector messageSelector) throws MQClientException {
try {
if (messageSelector == null) {
subscribe(topic, SubscriptionData.SUB_ALL);
return;
}

//核心就是创建SubscriptionData
SubscriptionData subscriptionData = FilterAPI.build(topic,
messageSelector.getExpression(), messageSelector.getExpressionType());

this.rebalanceImpl.getSubscriptionInner().put(topic, subscriptionData);
if (this.mQClientFactory != null) {
this.mQClientFactory.sendHeartbeatToAllBrokerWithLock();
}
} catch (Exception e) {
throw new MQClientException("subscription exception", e);
}
}

继续看FilterAPI.build(...)方法:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
// org.apache.rocketmq.common.filter.FilterAPI#build
public static SubscriptionData build(final String topic, final String subString,
final String type) throws Exception {
// 如果是TAG过滤,则执行这里
if (ExpressionType.TAG.equals(type) || type == null) {
return buildSubscriptionData(topic, subString);
}

if (subString == null || subString.length() < 1) {
throw new IllegalArgumentException("Expression can't be null! " + type);
}

// 如果是SQL过滤,则执行这里,相对简单,直接原样发送给broker
SubscriptionData subscriptionData = new SubscriptionData();
subscriptionData.setTopic(topic);
subscriptionData.setSubString(subString);
subscriptionData.setExpressionType(type);

return subscriptionData;
}
}

如果是TAG过滤,consumer会做些额外的处理:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
// org.apache.rocketmq.common.filter.FilterAPI#buildSubscriptionData 
public static SubscriptionData buildSubscriptionData(final String consumerGroup, String topic,
String subString) throws Exception {
SubscriptionData subscriptionData = new SubscriptionData();
subscriptionData.setTopic(topic);
subscriptionData.setSubString(subString);

if (null == subString || subString.equals(SubscriptionData.SUB_ALL) || subString.length() == 0) {
// 订阅所有消息
subscriptionData.setSubString(SubscriptionData.SUB_ALL);
} else {
// 如果订阅的不是*,则通过 || 分割
String[] tags = subString.split("\\|\\|");
if (tags.length > 0) {
for (String tag : tags) {
if (tag.length() > 0) {
String trimString = tag.trim();
if (trimString.length() > 0) {
// 保存分割后的TAG值
subscriptionData.getTagsSet().add(trimString);
// 保存分割后的TAG HashCode
subscriptionData.getCodeSet().add(trimString.hashCode());
}
}
}
} else {
throw new Exception("subString split error");
}
}

return subscriptionData;
}

这样consumer的订阅信息就准备好了,然后consumer启动,发送心跳数据:

1
2
3
4
5
6
7
8
9
10
//org.apache.rocketmq.client.impl.consumer.DefaultMQPushConsumerImpl#start

public synchronized void start() throws MQClientException {
//......代码省略.......

// 发送心跳
this.mQClientFactory.sendHeartbeatToAllBrokerWithLock();

//......代码省略.......
}

我们再看下broker是如何处理心跳数据的:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
public class ClientManageProcessor implements NettyRequestProcessor {

@Override
public RemotingCommand processRequest(ChannelHandlerContext ctx, RemotingCommand request)
throws RemotingCommandException {
switch (request.getCode()) {
// 接收客户端心跳指令,保存客户端信息
case RequestCode.HEART_BEAT:
return this.heartBeat(ctx, request);
case RequestCode.UNREGISTER_CLIENT:
return this.unregisterClient(ctx, request);
case RequestCode.CHECK_CLIENT_CONFIG:
return this.checkClientConfig(ctx, request);
default:
break;
}
return null;
}
}

heartBeat方法:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
// org.apache.rocketmq.broker.processor.ClientManageProcessor#heartBeat 
public RemotingCommand heartBeat(ChannelHandlerContext ctx, RemotingCommand request) {

// 处理消费者心跳
for (ConsumerData data : heartbeatData.getConsumerDataSet()) {
SubscriptionGroupConfig subscriptionGroupConfig =
this.brokerController.getSubscriptionGroupManager().findSubscriptionGroupConfig(
data.getGroupName());
//...

// 注册消费者信息
boolean changed = this.brokerController.getConsumerManager().registerConsumer(
data.getGroupName(),
clientChannelInfo,
data.getConsumeType(),
data.getMessageModel(),
data.getConsumeFromWhere(),
data.getSubscriptionDataSet(),
isNotifyConsumerIdsChangedEnable
);

// ...
}

// ...

return response;
}

继续往下走:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
// org.apache.rocketmq.broker.client.ConsumerManager#registerConsumer
public boolean registerConsumer(final String group, final ClientChannelInfo clientChannelInfo,
ConsumeType consumeType, MessageModel messageModel, ConsumeFromWhere consumeFromWhere,
final Set<SubscriptionData> subList, boolean isNotifyConsumerIdsChangedEnable) {

//...

// 更新topic下消费组信息
boolean r2 = consumerGroupInfo.updateSubscription(subList);

//...


this.consumerIdsChangeListener.handle(ConsumerGroupEvent.REGISTER, group, subList);

//...
}

继续往里走:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
// org.apache.rocketmq.broker.filter.ConsumerFilterManager#register(java.lang.String, java.lang.String, java.lang.String, java.lang.String, long)
public boolean register(final String topic, final String consumerGroup, final String expression,
final String type, final long clientVersion) {
// 如果是TAG 过滤,则退出
if (ExpressionType.isTagType(type)) {
return false;
}

// 如果是SQL过滤,但没有指定过滤规则,则退出
if (expression == null || expression.length() == 0) {
return false;
}

FilterDataMapByTopic filterDataMapByTopic = this.filterDataByTopic.get(topic);

if (filterDataMapByTopic == null) {
FilterDataMapByTopic temp = new FilterDataMapByTopic(topic);
FilterDataMapByTopic prev = this.filterDataByTopic.putIfAbsent(topic, temp);
filterDataMapByTopic = prev != null ? prev : temp;
}

BloomFilterData bloomFilterData = bloomFilter.generate(consumerGroup + "#" + topic);

// 构建SQL过滤的ConsumerFilterData
return filterDataMapByTopic.register(consumerGroup, expression, type, bloomFilterData, clientVersion);
}

注册方法内部主要就是构建ConsumerFilterData对象:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
// org.apache.rocketmq.broker.filter.ConsumerFilterManager#build
public static ConsumerFilterData build(final String topic, final String consumerGroup,
final String expression, final String type,
final long clientVersion) {
if (ExpressionType.isTagType(type)) {
return null;
}

ConsumerFilterData consumerFilterData = new ConsumerFilterData();
consumerFilterData.setTopic(topic);
consumerFilterData.setConsumerGroup(consumerGroup);
consumerFilterData.setBornTime(System.currentTimeMillis());
consumerFilterData.setDeadTime(0);
consumerFilterData.setExpression(expression);
consumerFilterData.setExpressionType(type);
consumerFilterData.setClientVersion(clientVersion);
try {
consumerFilterData.setCompiledExpression(
FilterFactory.INSTANCE.get(type).compile(expression)
);
} catch (Throwable e) {
log.error("parse error: expr={}, topic={}, group={}, error={}", expression, topic, consumerGroup, e.getMessage());
return null;
}

return consumerFilterData;
}

最终工作的就是:

1
2
3
4
5
6
7
8
9
10
11
12
public class SqlFilter implements FilterSpi {

@Override
public Expression compile(final String expr) throws MQFilterException {
return SelectorParser.parse(expr);
}

@Override
public String ofType() {
return ExpressionType.SQL92;
}
}

好了,到这里就铺垫好了,接下来我们继续看消息过滤的过程,这个过程中,上面的2个对象将会工作。

四. 拉取消息

broker处理拉取请求的处理器:PullMessageProcessor 方法内容比较多,还是关注和过滤相关的部分

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
// org.apache.rocketmq.broker.processor.PullMessageProcessor#processRequest(io.netty.channel.Channel, org.apache.rocketmq.remoting.protocol.RemotingCommand, boolean)
private RemotingCommand processRequest(final Channel channel, RemotingCommand request, boolean brokerAllowSuspend)
throws RemotingCommandException {
RemotingCommand response = RemotingCommand.createResponseCommand(PullMessageResponseHeader.class);
final PullMessageResponseHeader responseHeader = (PullMessageResponseHeader) response.readCustomHeader();
final PullMessageRequestHeader requestHeader =
(PullMessageRequestHeader) request.decodeCommandCustomHeader(PullMessageRequestHeader.class);


// .......省略诸多代码........

SubscriptionData subscriptionData = null;
ConsumerFilterData consumerFilterData = null;
// 这里是false, consumer启动时已经将订阅信息发送到了broker,拿来即用即可
if (hasSubscriptionFlag) {
try {
subscriptionData = FilterAPI.build(
requestHeader.getTopic(), requestHeader.getSubscription(), requestHeader.getExpressionType()
);
if (!ExpressionType.isTagType(subscriptionData.getExpressionType())) {
consumerFilterData = ConsumerFilterManager.build(
requestHeader.getTopic(), requestHeader.getConsumerGroup(), requestHeader.getSubscription(),
requestHeader.getExpressionType(), requestHeader.getSubVersion()
);
assert consumerFilterData != null;
}
} catch (Exception e) {
log.warn("Parse the consumer's subscription[{}] failed, group: {}", requestHeader.getSubscription(),
requestHeader.getConsumerGroup());
response.setCode(ResponseCode.SUBSCRIPTION_PARSE_FAILED);
response.setRemark("parse the consumer's subscription failed");
return response;
}
} else {
ConsumerGroupInfo consumerGroupInfo =
this.brokerController.getConsumerManager().getConsumerGroupInfo(requestHeader.getConsumerGroup());

// ....省略判断.......

// 获取订阅数据,这个就是consumer启动时发送给broker的
subscriptionData = consumerGroupInfo.findSubscriptionData(requestHeader.getTopic());

// .....省略判断.......

// SQL过滤
if (!ExpressionType.isTagType(subscriptionData.getExpressionType())) {
//TODO:前面分析consumer心跳时看到了它,SQL过滤时会创建
consumerFilterData = this.brokerController.getConsumerFilterManager().get(requestHeader.getTopic(),
requestHeader.getConsumerGroup());

// ....省略判断......
}
}

// .....省略判断.......

MessageFilter messageFilter;
if (this.brokerController.getBrokerConfig().isFilterSupportRetry()) {
messageFilter = new ExpressionForRetryMessageFilter(subscriptionData, consumerFilterData,
this.brokerController.getConsumerFilterManager());
} else {
// 创建MessageFilter
messageFilter = new ExpressionMessageFilter(subscriptionData, consumerFilterData,
this.brokerController.getConsumerFilterManager());
}


// 从broker 拉取消息
final GetMessageResult getMessageResult =
this.brokerController.getMessageStore().getMessage(requestHeader.getConsumerGroup(), requestHeader.getTopic(),
requestHeader.getQueueId(), requestHeader.getQueueOffset(), requestHeader.getMaxMsgNums(), messageFilter);


//....省略大量代码.....和过滤无关
}

接下来我们就看下从 CommitLog 读取消息并过滤的过程:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
// org.apache.rocketmq.store.DefaultMessageStore#getMessage
public GetMessageResult getMessage(final String group, final String topic, final int queueId, final long offset,
final int maxMsgNums,
final MessageFilter messageFilter) {

// .....省略大篇幅代码.......

// 在去commitlog读取消息之前,对ConsumeQueue条目进行 tag hashcode 过滤
if (messageFilter != null
&& !messageFilter.isMatchedByConsumeQueue(isTagsCodeLegal ? tagsCode : null, extRet ? cqExtUnit : null)) {
if (getResult.getBufferTotalSize() == 0) {
status = GetMessageStatus.NO_MATCHED_MESSAGE;
}

continue;
}

// 从CommitLog 读取消息
SelectMappedBufferResult selectResult = this.commitLog.getMessage(offsetPy, sizePy);
if (null == selectResult) {
if (getResult.getBufferTotalSize() == 0) {
status = GetMessageStatus.MESSAGE_WAS_REMOVING;
}

nextPhyFileStartOffset = this.commitLog.rollNextFile(offsetPy);
continue;
}

// 在从commitlog读取消息之后,进行 SQL 过滤
if (messageFilter != null
&& !messageFilter.isMatchedByCommitLog(selectResult.getByteBuffer().slice(), null)) {
if (getResult.getBufferTotalSize() == 0) {
status = GetMessageStatus.NO_MATCHED_MESSAGE;
}
// release...
selectResult.release();
continue;
}


}

主要就是做3件事:

  1. 在去 CommitLog 读取消息之前,先根据 TAG hashcode 过滤一次 ConsumeQueue 中的条目,如果ConsumeQueue中保存Tag HashCode与消费组需要消费Tag HashCode不一致,则不会读取CommitLog中的消息了。

broker先完成tag hashcode 过滤,consumer进一步完成tag 值过滤。

  1. 去 CommitLog 读取消息
  2. 从 CommitLog 读取出消息之后,如果是SQL过滤,则在broker完成过滤。

4.1 Broker完成 TAG HashCode 过滤

TAG 过滤就是ExpressionMessageFilter#isMatchedByConsumeQueue(..)方法:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
@Override
public boolean isMatchedByConsumeQueue(Long tagsCode, ConsumeQueueExt.CqExtUnit cqExtUnit) {
if (null == subscriptionData) {
return true;
}

if (subscriptionData.isClassFilterMode()) {
return true;
}

// by tags code.
if (ExpressionType.isTagType(subscriptionData.getExpressionType())) {

if (tagsCode == null) {
return true;
}

if (subscriptionData.getSubString().equals(SubscriptionData.SUB_ALL)) {
return true;
}

// 根据tag hashcode 过滤
return subscriptionData.getCodeSet().contains(tagsCode.intValue());
} else {

// ....省略else.....
}

return true;
}

这个方法内部会完成TAG 的hashcode 过滤,不过这里只是TAG的初步过滤,因为两个不同TAG也可能有相同的hashcode,所以这里过滤并不完善,真正的TAG过滤是交给消费者来完成的。

4.2 Broker完成 SQL 过滤

SQL的过滤是在ExpressionMessageFilter#isMatchedByCommitLog(..)方法中:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
@Override
public boolean isMatchedByCommitLog(ByteBuffer msgBuffer, Map<String, String> properties) {
if (subscriptionData == null) {
return true;
}

if (subscriptionData.isClassFilterMode()) {
return true;
}

// 如果是TAG过滤,则直接退出
if (ExpressionType.isTagType(subscriptionData.getExpressionType())) {
return true;
}

// SQL过滤的数据(sql表达式等等)
ConsumerFilterData realFilterData = this.consumerFilterData;
Map<String, String> tempProperties = properties;

// .....校验code.....

Object ret = null;
try {
MessageEvaluationContext context = new MessageEvaluationContext(tempProperties);

ret = realFilterData.getCompiledExpression().evaluate(context);
} catch (Throwable e) {
log.error("Message Filter error, " + realFilterData + ", " + tempProperties, e);
}

log.debug("Pull eval result: {}, {}, {}", ret, realFilterData, tempProperties);

if (ret == null || !(ret instanceof Boolean)) {
return false;
}

return (Boolean) ret;
}

这里会根据SQL进行过滤,如果该条消息是消费者想要的,则将其放入容器中,返回给消费者,如果不是消费者想要的,则直接丢弃,继续查询下一条消息。

这里的丢弃只是不返回给消费者,在清除 CommitLog 文件之前,这条消息都是在的。

五. 消费消息

前面说了,如果是TAG 过滤,则Broker会率先完成一次TAG Hashcode过滤,但是这样过滤并不完全,因为不同TAG可能有相同Hashcode,所以消费者要根据TAG 值完成最后的过滤。

如果是SQL过滤,只能由Broker完成,消费者不做其他任何操作。

那么我们还是看消费者消费消息时的过滤逻辑:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
// org.apache.rocketmq.client.impl.consumer.DefaultMQPushConsumerImpl#pullMessage
public void pullMessage(final PullRequest pullRequest) {

//......

PullCallback pullCallback = new PullCallback() {
@Override
public void onSuccess(PullResult pullResult) {
if (pullResult != null) {
// 处理拉取结果,这里将会完成TAG的值过滤
pullResult = DefaultMQPushConsumerImpl.this.pullAPIWrapper.processPullResult(pullRequest.getMessageQueue(), pullResult,
subscriptionData);
}

//.......
}

//.......
}

那么我们继续看下它的内部实现:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
// org.apache.rocketmq.client.impl.consumer.PullAPIWrapper#processPullResult
public PullResult processPullResult(final MessageQueue mq, final PullResult pullResult,
final SubscriptionData subscriptionData) {
PullResultExt pullResultExt = (PullResultExt) pullResult;

this.updatePullFromWhichNode(mq, pullResultExt.getSuggestWhichBrokerId());
if (PullStatus.FOUND == pullResult.getPullStatus()) {
ByteBuffer byteBuffer = ByteBuffer.wrap(pullResultExt.getMessageBinary());
List<MessageExt> msgList = MessageDecoder.decodes(byteBuffer);

List<MessageExt> msgListFilterAgain = msgList;
// 根据TAG 值过滤
if (!subscriptionData.getTagsSet().isEmpty() && !subscriptionData.isClassFilterMode()) {
msgListFilterAgain = new ArrayList<MessageExt>(msgList.size());
for (MessageExt msg : msgList) {
if (msg.getTags() != null) {
if (subscriptionData.getTagsSet().contains(msg.getTags())) {
msgListFilterAgain.add(msg);
}
}
}
}

// 将过滤后的消息给消费者消费
pullResultExt.setMsgFoundList(msgListFilterAgain);

//........
}

return pullResult;
}

六. 总结

  1. RocketMQ支持两种方式的消息过滤:TAG/SQL
  2. 要想使用SQL过滤,必须要在broker中配置:enablePropertyFilter = true
  3. TAG 过滤分两个阶段完成:
  • 第一阶段:broker率先根据tag的hashcode完成过滤
  • 第二阶段:consumer根据tag值完成最后的过滤
  1. SQL过滤只能在Broker中完成